Three-dimensional control of optical waveguide fabrication in silicon.
نویسندگان
چکیده
In this paper, we report a direct-write technique for three-dimensional control of waveguide fabrication in silicon. Here, a focused beam of 250 keV protons is used to selectively slow down the rate of porous silicon formation during subsequent anodization, producing a silicon core surrounded by porous silicon cladding. The etch rate is found to depend on the irradiated dose, increasing the size of the core from 2.5 microm to 3.5 microm in width, and from 1.5 microm to 2.6 microm in height by increasing the dose by an order of magnitude. This ability to accurately control the waveguide profile with the ion dose at high spatial resolution provides a means of producing three-dimensional silicon waveguide tapers. Propagation losses of 6.7 dB/cm for TE and 6.8 dB/cm for TM polarization were measured in linear waveguides at the wavelength of 1550 nm.
منابع مشابه
Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملFabrication of 3D Photonic Crystals toward Arbitrary Manipulation of Photons in Three Dimensions
The creation of large-area, unintentional-defect-free three-dimensional (3D) photonic crystals in the optical regime is a key challenge toward the realization of the arbitrary 3D manipulation of photons. In this article, we discuss an advanced fabrication method of 3D silicon photonic crystals based on the highly accurate alignment and wafer bonding of silicon-on-insulator (SOI) wafers. We intr...
متن کاملFemtosecond laser fabrication of integrated optical waveguides and microfluidic channels for lab-on-chip devices
We use a femtosecond laser to fabricate on a glass substrate both microfluidic channels and high quality optical waveguides, intersecting each other. Waveguide-channel integration opens new prospects for in-situ sensing in lab-on-chip devices. Introduction A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating...
متن کاملFabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications
We report two novel strategies to integrate magneto-optical oxides on oxidized silicon and SOI platforms based on strip-loaded waveguide structures. By using conventional waveguide fabrication and thin film deposition techniques, strip-loaded waveguides for magneto-optical non-reciprocal phase shift (NRPS) applications can be integrated on a silicon platform. As a demonstration, two structures,...
متن کاملFabrication of smooth silicon optical devices using proton beam writing
This work gives a brief review of proton beam writing and electrochemical etching process for the fabrication of smooth optical devices in bulk silicon. Various types of structures such as silicon-on-oxidized porous silicon waveguides, waveguide grating and disk resonators have been produced. Optical characterization has been carried out on the waveguides for both TE and TM polarization using f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2008